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Aizerman’s problem is solved in the affirmative in the case when the right-hand side of the differential 

equation is a self-adjoint matrix. 

In n-space R, we consider a non-linear system 

il ii = i aikxk, i=2,...,n (1) 
k=I k=I 

and together with it the linear system obtained from (1) when f(x,) = bx,. 
Aizerman’s problem [l] is as follows: if it is known that the trivial solution of the linear 

system is asymptotically stable for all b satisfying the condition a < b < 8, will the trivial 
solution of the non-linear system (1) be stable in the large of the following condition is satisfied 

This problem has inspired much research. It has been shown that condition (2) is not 
sufficient for stability in second-order [2] and third-order [3] systems. 

This note presents a study of stability for systems of non-linear equations of a more general 
form than (1) 

i=Ax+F(x) (3) 

from which it follows that Aizerman’s problem has a positive solution for self-adjoint matrices, 
provided that -<a, p cm. Here x=(x,, . . . , x,,), A= (UJ (i, k = 1, 2, . . . , n), 
F(x)=(f,(x,, . * -, x,)9 *. a, f,(& *. *, &)). 

Our stability analysis will be carried out in the spaces R,,, E,,, where ~5, is Euclidean space. 
We shall use the following notation: 

R(a,r)={xER,:llx-all9r). S(a,r)=(xcR,:llx-all=r) 

ReK=K,=(K+K*)l2, h(K)=li$llI+hKII-l)h-’ 

where A(K) is the logarithmic norm of the linear operator K [4], si(sj(K)) denote the s-numbers 
of K, that is, the eigenvalues of the operator K*K and a(k) is the spectrum of K. 

Consider a system of linear equations 

i=Ax+Bx (4) 
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where the matrix B = (brk] i, k = 1,2,. . . , n has been chosen so that 

a(Re(A+B))S -a, a=const>O (5) 

The set of matrices B for which condition (5) holds will be denoted by G. 
We will fix an arbitrary element z = (z,, . . , 2,)~ l?,, and associate with it the matrix 

C(z) = (cjk) (i, k = 1,2, . . . , n), whose elements are c,, = i(z,, . . , z,) (mz,J1 if z, # 0, c,, = d,, if 
.zk = 0, where drk = limZk+O J(z,, . . . , z,)z;’ if the limit exists, drk = 0 if the limit does not exist, 
and m is the number of non-zero elements z, (k = 1, 2, . . . , n) of the vector z. 

Theorem 1. Suppose that for any ZE R, the matrix C(z) is in the set G, the functions 
I%,, . * * 3 z,) (i = 1, 2, . . . , n> are continuous and fi(0, . . . , 0) = 0 (i = 1, 2, . . , n). Then the 
solution of the system of equations (3) is stable in the large. 

Proof: Suppose that at a time T the trajectory of system (3) passes through a point z E R, 
with norm II zil= r. We will show that a time interval bI exists during which the trajectory 
of the solution of system (4) passes from the sphere S(O,r) into a sphere R (0, rJ. where 
r, = e -m1’2r, To do this we will represent Eq. (3) in the form 

i=Ax+Cx+D(x) 

D(x)=(d,(x,,...,x,),...,d,(x ,r...r x,)), d,(x ,,...r x,)= 

=fi(x,,...,x,b-fi(z, 9*eerZ,)- iCik(Xk -Zk) 
k=l 

(6? 

The solution of Eq. (6) may be written for t Z= T in the form 

x(t) = e(A+a’-nx(T)+ ie(A+a%( x(z))dz 
T 

Changing to norms in (7), we have 

ilx(r)ll~ e -a(‘-T)r+ je”“-“llD(x(z))ll& 
T 

(8) 

Let At1 denote a time interval during which II 0(x(t)) Ilsa/2 II x(2) II. Then when t E[T, 
T+ AtI] inequality (8) may be strengthened, replacing D(x(7)) by ax(T)/2. Multiplying both 
sides of the strengthened inequality by cut, we obtain 

W C e aTr+: tcp(.r)dz. cp(t) = ewIlx(t)ll 69 

Applying the Gronwall-Bellman inequality to (9), we see that for T d t s T + At1 we have 
IIx(t)ll-e -= a(r-T)‘zr. Consequently, for t, = T + At1 we obtain the estimate r, = e-ti1’2r. Continuing 
the process, we finally see that at times t,, t,, . . . the trajectory of the solution of Eq. (3) cuts 
the spheres S(0, rz), S(0, r3), . . . . 

For the radii rk of the spheres we have 

r& = rexp[-a(ht,+...+ht&)/2] 

btk=tk-Q._,, k=1,2 ,..., t,=T 

We have thus shown that the trajectory of the solution to system (3), having started in a 
sphere S(0, r), will not leave that sphere. Applying Peano’s theorem [6, p. lo], we see that the 
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trajectory of system (4) can be continued to the infinite time interval [T, =). 
Let r* be the sum of the time intervals Afi constructed above, beginning with 63,. There are 

two possibilities: (1) T* = const < 00, (2) P = 00. 
Consider the first possibility. We will show that II x(T +T*) II= 0. We will prove this indirectly. 

Suppose that II x(T + T*) II= d > 0. Then, as shown previously, a time interval b* z= 0 exists such 
that II x(T + T * +At*) IIS e-” II x(T + T*) Il. It follows from the definition of T* that At* = 0. 
This contradiction implies that II x(T + T*) II= 0, i.e. the solution is asymptotically stable. 

Consider the second possibility. It was shown above that II x(fJ IIC exp[-a& + . . . +At, /2]r 
(k=l, 2, . . .). Taking into account that T* =QO, we have lim II x(&) II=0 as k + =J. Since 
whenever t, et the point x(t) lies inside the sphere S(0, II x(tr) II), it follows that the solution of 
system (4) is indeed asymptotically stable in this case, whatever the initial approximation. 

Let G* denote the set of matrices B= {b,,} (i, k = 1, 2, . . . , n), such that A(A+ B) < a, 
a = const c 0. 

Theorem 2. Suppose that for any z E R, the matrix C(z) is in the set G*, the functions J(zi, 
. . . , z,) are continuous and J(O, . . . , 0) = 0 (i = 1, 2,. . . , n). Then the solution of system (4) is 
stable in the large. 

The proof is similar to that of Theorem 1. The only difference is that in passing from formula 
(7) to inequality (8) one uses the well-known property of the logarithmic norm: II eA+’ IIS e”@+O 

(see 141). 
Let G** denote the set of matrices B= (b,) (i, k = 1, 2, . . . , n) such that s* = maxs(A + B) 

<a, a=constcO. 

Theorem 3. Suppose that for any z E E,, the matrix C(z) lies in the set G**, the functions 
J(z,, * * ’ 3 z,) are continuous and f,‘(O, . . . , 0) = 0 (i = 1, 2,. . . , n). Then the solution of system 
(3) is stable in the large. 

The proof is similar to that of Theorem 1. The difference is as follows. It is well known [4] 
that IleA+’ lld elu4’. The norm II A + C II is estimated in En by the following chain of inequalities 

II(A+C)xll=((A+C)x, (A+C)X)“~ =(U7W7W1’2 = 

=(7!K,flu)“2 =Il?MlS maxsillxll 
i 

where we have used the representation of the operator A+C = UT as a product of a purely 
isometric operator U and the operator T = (A + C) * (A + C) (see [5]). 

Let us return to Aizerman’s problem. Let (I= limf(_x)lx as n + 0 if the limit exists, or a= 0 
otherwise. 

We shall assume that (1) the matrix A= (a,) i, i=l, 2, . . . n is self-adjoint, (2) the linear 
system obtained from (1) when f(xJ= 6x, is asymptotically stable for any be B, B= [a, 
B]u (a}, (3) Condition (2) olds, and (4) a > -00, p < 00. Since the matrix A is symmetric, the 
same is true of the matrix 4 = (&] (I, k = 1,2, . . . , n), where 4, = a,, + b, ZV = aij if (i, j) + (1,l). 

We will show that if the solution of the linear system obtained from (1) when f(xJ = bn,, 
b E B, is asymptotically stable, then thereexists a constant y < 0 exists such that, for all such 
values of b, the eigenvalues of the matrix Ab are less than y. 

We will provefhis indirectly. Suppose that there is a sequence of numbers &(& E B) such 
that lim max(@A,)) = 0 as k + =. The sequence_4, contains a subsequence which converges 
to a number b * such that a d b* G p. Since maxa d y(P) < 0, it follows [7, chap. 141 that s 
e-neighbourhood (e = y(b*)l2) of b * exists for whose points b the spectrum of the matrix Ab 
lies to-the left of the number y(y(b*)+~ay(b*)/2<0. This contradiction implies that 
maxa(AJ < y for all a2 b < b. 

Since the matrix 4 is self-adjoint for all b E B, it follows that o(&)= a(Re&). 
Consequently, Theorem 1 can be applied to system (l).,This leads to the following assertion. 

Theorem 4. Suppose that the linear system obtained from system (1) when f(xJ = bx, is 
asymptotically stable for any b such that b E B, the matrix A is self-adjoint, conditions (2) hold 



428 I. V. Boikov 

and a>-~, p < 00. Then the non-linear system (1) is stable in the large. 

Corollary 1. Suppose that the solution of the system x = 1/2(x, + x,*)x is asymptotically 
stable for any b such that 6 E [a, p] u (a), condition (2) holds, and a > -=, p < 00. Then the non- 
linear system Q) is stable in the large. This assertion follows from Theorem 2 and the 
equality $1 / 2(A, + A,*)) = o(Re &,). 

Corollary 2. Suppose that the solution of the system x = &+ &x is asymptotically stable for 
all b such that 6 E B, condition (2) holds, and a z --oo, p <m. Then the non-linear system (1) is 
stable in the large. 

This assertion follows from Theorems 3 and 4. 
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